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Abstract

 In this paper we deal with the economic design of an X control chart 
used to monitor a quality characteristic whose observations fit to a first order 
autoregressive model. The Duncan cost model is used to select the control 
chart parameters, namely the sample size (n), the sampling interval (h) and 
the control limit coefficient (k), that lead to the optimal monitoring cost.  We 
found that the autocorrelation has an adverse effect on the chart’s power, on 
the false alarm risk and on the cost. It also increases n and h and decreases 
k. To counteract this undesired effect we considered setting up the subgroups 
using non-sequential observations. It is shown that this sampling strategy 
significantly reduces the monitoring cost.

Key-words: Autocorrelation; First Order Autoregressive Model; Economic 
Design; Control Chart; Statistical Process Control.

Introduction
Due to its inherent simplicity the X control chart is often selected 

to monitor the mean stability of a quality characteristic. The underlying 
assumption in Statistical Process Control (SPC) is that the observations from 
the process are independent and identically distributed (i.i.d.). However, in 
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many applications the dynamics of the process induce serial correlation in 
observations closely spaced in time. The application of the X control chart for 
the monitoring of autocorrelated processes has been considered by several 
authors (Vasilopoulos & Stamboulis, 1978; Runger & Wilemain, 1995/1996; 
Gilbert et al, 1997; Sun & Xu, 2004; Zhang, 2006; Costa & Claro, 2008) who 
were primarily concerned with searching the chart properties and assessing its 
efficiency (typically expressed by the average run length, or the ARL). 

When an X control chart is used to monitor a process, three parameters 
should be determined: the sample size, n, the sampling interval, h, and the 
control limits coefficients, k. The selection of these three parameters is usually 
called the design of the control chart. Comprehensive literature reviews for 
several different cost models and applications of various control charts are 
available in the literature (Montgomery, 1980; Vance, 1983; Ho & Case, 1994).

Given its widespread acceptance as a realistic model, we will adopt the 
methodology proposed by Duncan (Duncan, 1956) to represent the objective 
function which minimizes the average cost of monitoring processes subjected 
to a single assignable cause. Duncan’s work was the cornerstone for much 
of the research in this area. Research studies conducted using the Duncan’s 
model in connection with a number of Shewhart control charts for independent 
and cross-correlated processes are described next.

The Duncan’s single cause cost model was embellished with Taguchi 
loss function in order to incorporate losses that result from inherent variability 
(Alexander et al, 1995). Although Duncan applied a penalty cost for operating 
out of control, there was no recommendation to the approach by which this 
cost could be obtained or quantified. This was considered and evaluated by 
the authors in their model. From the sensitivity analysis they found that n 
increases and h decreases to steady state values as the frequency of process 
shifts decreases. The rate of convergence to the steady state depends on the 
cost of searching for an assignable cause. The higher this cost, the slower 
the rate of convergence. In addition, they indicated that n and h have to be 
adjusted based on the size of the process shift that is investigated. For a small 
process shift, larger values of n and h are required; however for large shifts, 
they recommended a small value for n and h to be used.

The Weibull distribution was used to model the occurrence of 
assignable causes for the economic design of RX −  charts (Costa & Rahim, 
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2000). The authors modified the Duncan cost model by assuming a non-
uniform decreasing sampling scheme to incorporate the effects of process 
deterioration and a two-step search procedure to determine the economically 
optimal design parameters. From the sensitivity analysis, they found that there 
is a significant cost penalty when using a uniform sampling scheme versus 
a non-uniform sampling scheme. In addition, when the scale parameter 
increases and the shape parameter decreases, h decreases whereas n and 
the penalty cost increase. Finally, they found that the optimal economic design 
is very sensitive to the value of the shape parameter.

The economic model of X  chart for cross-correlated data was 
developed by Chou et al (2001). Duncan’s single cause model was used as 
the objective function. The correlation model given in Yang & Hancock (1990) 
was applied to derive the error probabilities of the control chart. From their 
analysis, they found that highly positive correlated data results in a smaller n, 
h and k. Also, the power of the chart decreases as the value of the correlation 
coefficient increases. On the other hand, highly negative correlated data result 
in smaller n and k; however, h is not significantly affected.

Considering the Duncan cost model, Engin (2004) developed an 
application for the use of economic statistical X  chart design in the textile 
yarn industry. Searching for the optimum n, h and k the author considered the 
power of the control chart to be at least 0.95 and the penalty-cost as minimal 
as possible. 

Costa & De Magalhães (2005) presented a model for the economic 
design of a two-stage control chart based on both a performance variable 
(X) and a correlated, less expensive to measure surrogate variable (Y). 
The assumption of an exponential distribution to describe the length of time 
the process remains in control allowed the application of the Markov chain 
approach to obtain the chart’s properties. The economic design considered by 
the authors was derived and properly adapted from the Duncan’s model and 
the results confirmed that the two-stage model is better than the one-stage 
model in terms of the expected net income.

The literature dealing with the economic design of X  chart is very 
rich and the same is true regarding to the number of papers dealing with 
the monitoring of autocorrelated processes, especially with the first order 
autoregressive model (Montgomery & Mastrangelo, 1991; Wardell et al, 1994; 
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Runger & Willemain, 1996). Based on that, it seems worthwhile to consider 
the economic design of X charts for autocorrelated processes. In this paper, 
we study the economic design of the X chart when the process observations 
follow a first order autoregressive (AR1) model. 

The Process Model and the X Contol Chart 
Throughout this paper we assume that the observations of the quality 

characteristic to be monitored fit to a First Order Autoregressive AR(1) model, 
frequently employed in previous researches (Montgomery & Mastrangelo, 
1991; Wardell et al, 1994; Runger & Willemain, 1996).

The process observations Xt can be written as:

( )  , t1tt εµφµ +−=− −XX    t=1, 2, 3,..., T                (1)

and the process variance is given by:

2

2
2
X 1 φ

σ
σ ε

−
=                     (2)

We additionally consider that the AR(1) model is accurate and the 
process autocorrelation is positive, ranging from low to moderately high levels 
( )75.00 ≤< φ , believed to be prevalent in control charts applications. 

The design of the X  chart for the AR(1) process follows the concepts 
of the classical methodology applied to independent data, with centerline at 

0µ  and control limits (CL) set at Xkσµ ±0 ; however, taking the autocorrelation 
into account to determine the sample standard deviation.

The type I error probability (α ) of the X control chart is: 

0.75
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According to Alwan & Radson (1992), the standard deviation of a 
sample average taken from any stationary process, when the subgroups are 
“practically” independent, is: 
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where:

2
Xσ  is the process variance

n is the sample size

jγ is the autocovariance coefficient at lag j 

The expression (4) can be rewritten as:
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Assuming that 00 =µ  

( )[ ] 1,0N~   Pr ZkZ >=α        (6)

where Z is the standard normal variate and k is the coefficient of the control 
limits.

When the process is out-of-control .01 X
σδµµµ +==  The type II error 

probability ( β ) of the X control chart is: 

[ ]    Pr 0µµβ ≠≤≤= UCLXLCL       (7)

where

LCL is the lower control limit

UCL is the upper control limit

µ is the mean of the process characteristic

0µ is the mean of the process characteristic when the process is in control

1µ  is the mean of the process characteristic when the process is off-target

and the power of the chart is:

β−=1p          (8)

that can be rewritten as: 
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The influence of the autocorrelation on the ARL is shown in Table 1.

Table 1 - Influence of the autocorrelation on the ARL, AR(1) model, n=4, ARL0=370.4 

δ 0=φ 25.0=φ 50.0=φ 75.0=φ

0.25 157.6 192.3 226.7 256.7

0.50 45.1 66.1 93.1 123.7

0.75 15.5 25.1 39.5 58.4

1.00 6.5 11.0 18.5 29.4

1.25 3.4 5.6 9.6 15.9

1.50 2.1 3.3 5.5 9.3

1.75 1.5 2.2 3.5 5.8
2.00 1.2 1.6 2.4 3.9

It can be clearly seen that when the data autocorrelation increases the 
control chart’s ability to detect process mean shifts is reduced.

Brief Review of the Duncan’s Single-Assignable Cause Cost Model
In his pioneer article, Duncan proposed the consideration of economic 

factors in the design of a control chart (Duncan, 1956). The components of 
Duncan’s cost model are:

a) the cost of an out-of-control condition.

b) the cost of false alarms.

c) the cost of finding an assignable cause.

d) the cost of sampling, inspection, evaluation and charting.

Duncan assumes that the process starts in-control and, at a random 
time, the process mean is subjected to a step shift. During the search for the 
assignable cause, the process is allowed to continue in operation. Duncan 
considered the production cycle depicted in Figure 1.

0.750.500.25
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Figure 1 – The production cycle in the Duncan’s model

When the average cycle length is determined the cost components 
can then be converted to a “per hour of operation” basis. The four components 
of average cycle length are as follows:

a) Assuming that the process begins in the in-control state, the time 
interval that the process remains in control is an exponential random 
variable with a mean of λ1 , which is the average process in-control 
time.

b) When the shift occurs, the process mean shifts, and the probability 
that this out-of-control condition will be detected on any subsequent 
sample is β−1  or the power of the chart. Thus, the expected number 
of subgroups taken before the detection of the process mean shift is 

( )β−11 . The average time of occurrence within an interval between 
the jth and the (j+1)th subgroups, given an occurrence of the assignable 
cause in the interval between these subgroups, is:

( )
( )h
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Noting that the number of samples required to produce an out-of-
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control signal, given that the process is actually out of-control, is a 
geometric random variable with mean ( )β−11 , it can be concluded that 
the expected length of the out-of-control period is ( ) τβ −−1h .

c) The average sampling and testing time for each sample is a constant 
g proportional to the sample size n, so that the delay in plotting a 
subgroup point on the X  chart is gn.

d) The time required to identify and fix the assignable cause following the 
signal is a constant D.

Therefore, the expected length of a cycle, denoted by E(T), is:

DgnhTE ++−
−

+= τ
βλ 1

1)(                (11)

The expected net income per cycle is:
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where V0 is the net income per hour of operation in the in-control state, V1 is 
the net income per hour of operation in the out-of-control state; 1a  and 2a are 
respectively the fixed and variable sampling cost,  3a  is the cost of finding an 
assignable cause and 3'a  is the cost of investigating a false alarm. 

The expected net income per hour is:

( ) ( )
( ) ( )LEV
TE
CEAE −== 0                 (13)

where:

gn

gn
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The hourly penalty cost associated with production in the out-of-control 
state is 4a  and the quantity E(L) is called the penalty-cost and it is a function 
of the control chart parameters n, k and h. Obviously, the expected net income 
per hour reaches its maximum when E(L) is minimum. 

The Influence of the Autocorrelation on the Optimal Cost
A FORTRAN program was coded for the minimization of the cost model 

described in expression (14). The program calculates the optimal control limit 
coefficient (k) and sampling frequency (h) for several values of n and computes 
the value of the corresponding α  risk, chart’s power and the cost function. To 
assess the effect of the serial dependency on the loss cost we borrowed the 
cost and model parameters found in Montgomery (2004), chapter 9, example 
9-5, whose data is reproduced in Table 2, for the reader’s convenience.

Table 2 - Cost and model parameters 

1a 2a 3a '
3a 4a λ δ g D

1.00 .10 25.00 50.00 100.0 0.05 2.0 0.0167 1.0

(source: Montgomery, 2004, chapter 9, example 9-5)

In spite of the fact that the program calculates the cost for several 
samples sizes, we summarized in Table 3 only the combination of parameters 
that results in the optimal cost for processes where the autocorrelation level    
(φ ) ranges from 0 to 0.75 in increments of 0.25.

The strategies commonly adopted so that the subgroups be “practically” 
independent are: (i) sufficiently large interval between subgroups, (ii) sufficiently 
large sample sizes and (iii) both (i) and (ii) combined. Runger and Willemain 
(1995) recommended selecting the sample size and/or the between-subgroups 
sampling interval in order to reduce the lag one autocorrelation of the subgroup 
means to no more than 0.10. Taking into account that the production rates in 

gn
gn
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the modern industrial settings are substantially high (say, typically over 60 units 
per hour) the sample size and sampling interval equivalent to the minimum 
cost, see Table 3, are more than enough to mitigate the serial dependency to 

10.01 ≤ρ  for AR(1) processes with 

Table 3 - Control chart parameters for the minimum monitoring cost of AR(1) processes 
(unconstrained design)

φ n
optimum 

k

optimum 

h (hours)
alpha power

optimum 

cost

0.00 5 2.99 .76 .0028 .9308 10.38

0.25 7 2.88  .80  .0040  .9169   10.89

0.50 9 2.68  .83  .0074   .8583   11.71
0.75 13  2.43  .87  .0151   .7682     13.32

It can be noted that when the autocorrelation increases, the power 
of the chart decreases and the sample size (n), the sampling interval (h), the 
false alarm risk (α ) and the minimum cost all increase.

According to Woodall (1986) the economic method of designing 
control charts has several weaknesses. For example, the excessively large 
number of false alarms may introduce extra variability into the process 
through overadjustment and destroy confidence in the monitoring procedure. 
To overcome this issue, a statistical constraint of 0027.0≤α was added to the 
economic design and the effects are shown in Table 4.

Table 4 - Control chart parameters for the minimum monitoring cost of AR(1) processes
( constrained design: 0027.0≤α )

φ
minimum

n

optimum 

k

optimum h 

(hours)
alpha power

optimum 

cost
0.00 5 3.06 .82 .0022 .9210 10.38
0.25 7 3.05  .85  .0023  .8877   10.91
0.50 11 3.02  .94  .0025   .8566   11.82
0.75 19  3.00 1.00  .0027   .7620     13.96

The inclusion of the statistical constraint led to larger samples sizes 
and slightly higher cost; the control limit coefficients (k) and the sampling 
interval increased and the power of the chart was reduced. 
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As it can be confirmed from Tables (3) and (4) the positive autocorrelation 
has a negative effect on the monitoring cost as well as on the chart’s efficiency. 

A Sampling Strategy to Partially Offset the Influence of the 
Autocorrelation on the Optimal Cost

The autocorrelation on the process observations has a large impact on 
control charts designed under the independence assumption. A typical effect 
is to increase the rate of false alarms (Lu & Reynolds Jr, 1999). Widening the 
control limits to encompass the systematic non-random behavior resulting from 
the positive correlation reduces the number of false alarms; however a special 
cause becomes not readily discernible, and consequently the monitoring cost 
increases. A proposed alternative to partially offset this effect is to attenuate 
the serial dependency by skipping items within the subgroup. To assess the 
efficiency of this strategy, we vary the gap between the subgroup observations, 
from    j= 1 to j= {2, 3 and 4}. To exemplify, the observations in a subgroup of 
size 4 are shown in Table 5.

Table 5 - Observations included in a subgroup of size 4 for  j={1,2, 3 and 4}

j observations included

1 321 ,,, +++ iiii XXXX

2 642 ,,, +++ iiii XXXX

3
963 ,,, +++ iiii XXXX

4 1284 ,,, +++ iiii XXXX

The efficiency of the control chart improves significantly when non-
sequential observations are used to set up the subgroups, see Table 6.

We additionally computed the optimal cost and the cost reduction  
percentage (in comparison with the optimal cost when j=1) for processes with 
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low, moderate and moderately high autocorrelation level assuming the model/
cost factors given in Table 2 and the ( )0027.0≤α  constraint on the false alarm 
rate, see Table 7. 

If on the one hand, this sampling strategy leads to longer times to set 
up the sample; on the other hand it can be a helpful approach to reduce the 
monitoring cost and increase the power of the chart, see Figures 2 and 3. 

Table 6 - Influence of the autocorrelation on the ARL, AR(1) model, n=4, j={1,2,3 and 4} and 
ARL0=370.4 (unconstrained design)

φ gap δ
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00 j=1 157.6 45.1 15.5 6.5 3.4 2.1 1.5 1.2

0.25

j=1 192.3 66.1 25.1 11.0 5.6 3.3 2.2 1.6

j=2 164.2 48.7 17.0 7.2 3.7 2.2 1.6 1.3

j=3 158.3 45.8 15.8 6.7 3.5 2.1 1.5 1.2

j=4 157.6 45.1 15.5 6.5 3.4 2.1 1.5 1.2

0.50

j=1 226.7 93.1 39.5 18.5 9.6 5.5 3.5 2.4

j=2 192.3 66.1 25.1 11.0 5.6 3.3 2.2 1.6

j=3 173.9 54.3 19.5 8.4 4.2 2.5 1.7 1.4

j=4 164.2 48.7 17.0 7.2 3.7 2.2 1.6 1.3

0.75

j=1 256.7 123.7 58.5 29.4 15.9 9.3 5.8 3.9

j=2 234.8 100.7 43.9 20.9 11.0 6.3 4.0 2.7

j=3 216.5 84.3 34.6 15.8 8.2 4.7 3.0 2.1
j=4 201.8 72.8 28.5 12.7 6.5 3.7 2.4 1.8
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Table 7 – Optimum cost and cost reduction percentage for AR(1) processes using different 
gapping strategies for the subgroup observations (constrained design: 0027.0≤α )

 

φ

lag

 (j)
n

optimum

 k

optimum

h(hours)
alpha power

optimum

cost

cost 

reduction

0.25

1 7 3.05 0.85 0.0023 0.8877 10.91

2 6 3.05 0.85 0.0023 0.9453 10.48 3.94%

3 5 3.07 0.79 0.0021 0.9110 10.41 4.58%

4 5 3.06 0.82 0.0022 0.9119 10.39 4.76%

0.50

1 11 3.02 0.94 0.0025 0.8566 11.82

2 7 3.05 0.85 0.0023 0.8877 10.91 7.70%

3 6 3.05 0.85 0.0023 0.9139 10.61 10.23%

4 6 3.05 0.85 0.0023 0.9453 10.48 11.33%

0.75

1 19 3.00 1.00 0.0027 0.7620     13.96

2 13 3.01 0.97 0.0026 0.8583 12.17 12.80%

3 11 3.02 0.94 0.0025 0.8920 11.46 17.90%
4 8 3.04 0.88 0.0024 0.8839 11.12 20.34%

0,0

0,2

0,4

0,6

0,8

1,0

2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

po
w

er

j=1 j=2 j=3 j=4

Figure 2 – Monitoring cost of an AR(1) process ( 50.0=φ ) with 152 ≤≤ n and 41 ≤≤ j0.50 15
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Figure 3 – Power of the chart of an AR(1) process                  with                  and 41 ≤≤ j

Conclusion
Most standard control charting schemes for SPC are based on the 

assumption that measurements of the product quality variable are independent. 
However, positive autocorrelation at low lags is commonplace in many industrial 
processes where, given the advances in sensor technologies, observations 
are closely spaced in time leading to within-subgroup serial correlation with 
undesirable effects on the performance of control charts and the optimal 
monitoring cost. Aiming to partially offset the influence of the autocorrelation, 
we propose a sampling strategy where non-sequential observations are 
used to set up the subgroups. In the present research, where the process 
observations were assumed to fit to an AR(1) process, the major findings are 
the following:

•	 The positive autocorrelation decreases the power of the chart, increases 
the false alarm risk (α ) and the minimum cost. It also increases the 
sample size (n) and the sampling interval (h) and decreases the 
coefficient of the control limits (k).

•	 Skipping observations within the subgroup attenuates the serial 
dependency contributing to improve the chart’s power and to reduce 
the monitoring cost.

2 15n≤ ≤0.50)(φ =
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Nomenclature

n sample size
h sampling interval
k coefficient of the control limits
Z standard normal variate
X sample mean
µ mean of the process characteristic

0µ mean of the process characteristic when the process is in control

1µ mean of the process characteristic when the process is off-target

Xσ process standard deviation 

Xσ sample means standard deviation 

α  type I error probability of the control chart

β type II error probability of the control chart

φ coefficient of the AR(1) autoregressive model
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jγ autocovariance coefficient at lag j

jρ autocorrelation coefficient at lag j

tε
AR(1) model errors, independent and identically distributed random 

variables with zero mean and variance
2
εσ

p power of the control chart
UCL upper control limit
LCL lower control limit

1a fixed sampling cost

2a variable sampling cost

3a cost of finding an assignable cause

4a hourly penalty cost of operating out-of-control

3'a cost of investigating a false-alarm
λ reciprocal of the average process in-control time
δ magnitude of the process mean step shift

g average sampling, inspecting, evaluating and plotting time for each 
sample

D time required to find the assignable cause

V0 net income per hour of operation in the in-control state

V1 net income per hour of operation in the out-of-control state

E(T) expected length of a production cycle
E(C) expected net income per cycle
E(A) expected net income per hour
E(L) expected loss per hour or the loss-cost
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